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Differences in data definition between sites are a
known obstacle to sharing of reminder-system rule
sets. We identify another data characteristic-data
accuracy-with implications for sharing. We
reviewed the literature on data accuracy and found
reports of high error rates for many data classes
used by reminder systems (e.g., problem lists). 7The
accuracy of other, equally important, data classes
had not been characterized. Wide variations in
accuracy between sites has been observed,
suggesting that such differences may pose a
previously unrecognized barrier to sharing of
reminder rules. We propose a belief-network model
for encoding reminder rules that explicitly models
site-specific data accuracy and we discuss how
encoding knowledge in this format may lower the
cost and effort required to share reminder rules
between sites.

INTRODUCTION

Knowledge bases (KBs) for reminder systems are
costly to develop and maintain, and yet cover only a
limited fraction of the domain of medicine. For these
reasons, sharing of KBs is a significant research area.

Researchers have identified local differences in
data definition as an obstacle to sharing KBs among
sites (1, 2). As we shall discuss, differences in data
accuracy may pose an additional obstacle to sharing.
In this paper, we review the literature on data
accuracy with particular emphasis on those aspects
relevant to sharing, and we propose a belief-network
model that may reduce the cost of adapting rules
developed at one site for use in another site.

DATA ACCURACY

Medical data are defined and collected with a marked
degree of variability and inaccuracy. The taking of a
medical history, the performance of a physical
examination, the interpretation oflaboratory tests, even the
definition of diseases, are surprisingly inexact. We
consider the implications of this reality for computerized
medical information systems, quantitative techniques for
medical diagnosis, and the evaluation of bioengineering
technology. Komaroff (3).

Because we are primarily interested in reminder
systems, which draw inferences about patients from
data in electronic medical records (EMRs), we define
accurate patient data to be data that represents the
true state of the patient. There are at least three ways
that data in an EMR may become inaccurate under
our definition. First, EMRs receive observations and
data about patients from diverse sources (Fig. 1).
Data may be entered directly by patients, via
laboratory systems, or via pathways emanating from
physician observations, including transcription, data-
entry personnel, and direct clinician entry.
Inaccuracies of patient representation may be
introduced at each point in this flow of information
from patient to record. Second, the true state of a
patient changes with time due to the effects of disease
or treatments; data error may accumulate from a lack
of recent observations. For instance, a medication
(e.g. warfarin) may be stopped between visits. If this
change were not captured and a reminder system were
to evaluate its rule set after this change (e.g. triggered
by a scheduled visit or the passage of time), it would
do so on the basis of inaccurate data. Third, due to
representational limitations of the EMR, it may not be
possible to represent some patient characteristics.

Studies that have examined overall data accuracy
(in research and epidemiologic databases as well as
clinical information systems), have found data
accuracy rates that range from 57 to 96% (Table 2).
Data accuracy for diagnoses ranged from 33.7% for a
diagnosis of smoking to 98.9% for anemia (another
author reported 54.1% for anemia). Data accuracy
for procedures ranged from 30% of events captured
and accurately recorded (suturing of lacerations
during delivery) to 97% (Caesarean-section).
Accuracy for surgical complications were 50% to
95.7%. In one study, descriptive modifiers from
dictated endoscopy and ultrasonography reports had
accuracy rates of 86.4% to 95.7%. For several
classes of data commonly referred to in reminder
rules-laboratory test results, allergies, diagnoses,
and, until recently, medications-there has been no
characterization of data accuracy.

Of particular importance to sharing is one study
that compared accuracy of the same data classes at
similar district general hospitals in southern England
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IMPLICATIONS FOR SHARING

Fig. 1 Flow of information from the patient to EMR.

(4). These two hospitals were located in the same
part of the country, had similar staff, used their
systems for the same period of time, and used the
same software package (the Manchester Orthopaedic
Database). The study examined the accuracy of
dictated keywords in systems used by the Department
of Orthopedics at each hospital (departments A and
B). Keywords described the clinical details of patient
care and were of three types: diagnosis, procedure,
and complication. The authors measured the rates of
both inaccurate and missing keywords (keywords that
should have been used) for 100 sequential inpatient
admissions at each department. The keywords in the
computer system were compared to an 'ideal' set of
keywords generated by manual review of medical
records. The overall accuracy at department B was
88%, with a 25% keyword omission rate. The overall
accuracy at department A was 57% with a 55%
omission rate. For diagnoses, the accuracy was 67%
for A (47% omission) and 91% for B (26%
omission). For procedures, accuracy was 44% for A
(47% omission) and 86% for B (20% omission). For
complications, accuracy was 50% for A (83%
omission) and 77% for B (44% omission). The
differences achieved statistical significance for
overall rate, and rates for diagnosis and procedure
keywords. Thus, despite their numerous similarities
(setting, time of use, software, staffing), these two
systems had significantly different rates of accuracy.

From our review, we conclude that error rates are
high, the accuracy of many data classes typically used
by reminder systems has not been characterized
(although some of these data classes, such as
laboratory tests, are collected automatically and thus
are likely to be accurate), and accuracy varies widely
among sites that potentially may want to share KBs.

Reminder systems are developed and function in the
context of inaccurate EMR data. They sometimes
send false alarms triggered by inaccurate data, but the
developers and recipients of such reminders
understand that the systems have this property.
Problems may arise, however if we move rules
developed at one location to another with higher
levels of data error. (There are many other differences
between sites that can cause problems in portability.
In this paper, we are thinking of two sites, as in the
English study, that differ mainly in data accuracy).

If data inaccuracy could be eliminated, it would
not be a barrier to sharing. However, this is not likely
to happen soon. People will incorrectly record
observations, social forces may introduce distortion
(e.g., diminishing record confidentiality may cause
physicians to withhold or falsify information in the
medical record (5) ), and the dynamic nature of
patient health-states and the intermittent capture of
medical data by EMR systems, make a perfect
representation of a patient virtually unattainable.

RULE PORTABILITY

The objective of sharing is to reduce the cost and
effort required to implement and maintain
knowledge-based systems.

The idea of sharing can mean something as
simple as communicating which practice guidelines
(PGs) have been successfully implemented to
transferring the implemented PGs in a syntax that the
receiving system could interpret. It is not clear from
research to date that transferring implemented rules or
PGs reduces the cost or effort for the receiving site
more than communicating the topics of reminding.

To appreciate the role that data accuracy plays in
sharing (and to understand why rules are not portable,
in the general case), consider the meaning of a rule at
the receiving site. At the receiving site, the meaning
of the elements in the rule is ambiguous. The
receiving site must choose between interpreting the
elements as references to patient characteristics, or as
references to database variables. Furthermore, there
is no characterization of the accuracy of the rule
itself, which we define as the precision with which it
identifies patients for whom the reminder is
appropriate. Consider, for example, a hypothetical
PG that states that we should obtain a screening
cholesterol for 40 year-old male smokers. This PG is
an imperfect representation of how an expert
physician would practice (a cardiologist would not
check a cholesterol if such a patient were moribund).
If we implement the PG in a reminder system,
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Table 2. Reported data accuracy rates from the literature
Data Class References Accuracy Rates
All (overall accuracy) Aas, 1988(6); Barrie, 1992 (7); Basden, 1979 (8); 65.5%', 96%b, 93% c, 94%

Jelovsek, 1978 (9); Lloyd, 1985 (10); Payne, 1991 d, 78%e, 96% f, 95.8%g,
(11); Rao, 1986 (12); Ricketts, 1993 (4); Teperi, 57%-88%h, 95%, 94.1%
1993 (13); Wilton, 1993 (14)

Diagnosis/problem list Aas, 1988 (6) 88.5%a
Barrie, 1992 (7) 96.5%b
Block, 1989 (15) 33.7- 92.3%i
Rao, 1986 (12) 98.3- 98.9%odg
Roos, 1993 (16) 95%
Teppo, 1994 (17) 66%_90%k q

McGonigal, 1992 (18) 41.3%-93%'
Procedures/Operations Aas, 1988 (6); Barrie, 1992 (7); Roos, 1993 (16); 89.2%a, 82%b, 90%m, 70-

Skinner, 1988 (19); Teperi, 1993 (13) 95%n q, 30-97%o q
Surgical Complications Aas, 1988 (6); Barrie, 1992 (7); Ricketts, 1993 (4) 95.7%a 54.1 %b 50%_77%h
Modifiers of pathology findings Kuhn, 1991 (20) 86.4%-95.7%P q
Medications Block, 1995(21); Wagner, 1995 (22) 70.2%r, 77.6%r

a refers to % of records with no inaccuracies in the data used to determine Diagnosis Related Groups
b also reports missing data, with 38% of 'keywords' for diagnoses, procedures, and complications missing
C refers to % of records without a "major error"
d median rate over 98 variables (range 16-100%), includes only errors of omission
e out of 20,832 data items that were included in automated discharge abstracts for 1829 records
f this study reports that 10% of patients were omitted from an immunization database
g accuracy rate not specifically calculated or stated by author
h rates for two hospitals using same system, see text for discussion of this study
smoking-33.7%, pediatric anemia-35%, adult anemia-54.1%, urinary tract infection-54.8%, and pregnancy-92.3%
refer to anemia-98.9%, coma-98.6%, and 'pyrexia under observation'-98.3%

k varying rates dependent on type of cancer
141.3% for presenile dementia (17.3% omission), 93% for presenile Alzheimer's disease (6.6% omission)
m for 8 of 11 procedures (overall rate for all 11 not given)
n major operations-70%, all orthopedic operations-95%, and hip replacements-84%
° best was C-section-97%, worst was suturing of lacerations-30%
P refers to omissions of descriptive modifiers of gut pathology found on endoscopy and ultrasonography
q includes only errors of omission
r data on medication accuracy is currently unpublished

additional imprecision is introduced by mismatches
between the PG and the variables in the EMR, due to
differences in both data definition and data accuracy.

At the original site, knowledge engineers have
come to terms with the imprecision of their rules.
Based on data about (or subjective estimates of) the
rates of false and true alarms and their utilities, they
may have made a series of decisions about the form
of the rule, and whether to implement it at all.
Currently, there is no way-other than verbal
communication-for them to convey this information
to a receiving site. The receiving site, therefore, must
discover for itself if adding the rule to its system is of
net positive benefit. The fact that logical languages
cannot represent rates of false alarms (or their
utilities) is a fundamental obstacle to sharing. For
this reason, we propose the following probabilistic
formulation of reminder systems and discuss how it

may reduce the work involved in sharing reminder
rules.

BELIEF-NETWORK REMINDER RULES

The decision whether to incorporate a shared
reminder rule into a reminder system should depend
on the expected utility of the rule at the new site. The
expected utility of a rule is determined by the
expected rate of false and true positives at the
receiving site, and the utility of those events. Fig. 2 is
a belief-network representation of the relationship
between data accuracy and false and true alarms.
(We do not discuss the utility of these alarms in this
paper. Conveying information that allows the
receiving site to estimate the rate of true and false
alarms that they will experience, however, may
reduce the cost of sharing, as we shall discuss.)
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The box in Fig. 2 identifies a subgraph of the
belief network that represents the PG if a patient has
peptic ulcer disease and she is taking a non-steroidal
anti-inflammatory drug, then we should stop the non-
steroidal drug. We refer to the nodes in the belief
network that represent PG preconditions (i.e., peptic
ulcer disease and non-steroidal drug use) as patient-
state nodes because a rule author usually means the
true state of the patient when she formulates a rule.
We use capital letters for patient-state variables. The
PG preconditions satisfied node (labeled Pg sat)
represents whether the PG preconditions are satisfied,
identical to whether the logic of the rule is satisfied.

pud? nsaid

PUD NSAID

Pg sat

6 Pg appropriate

Database
nodes

PG pre-
conditions

PG pre-
conditions
satisfied

Fig. 2. Belief-network representation of the
reminding rule if a patient is taking a non-steroidal
anti-inflammatory drug (NSAID) and the patient has
peptic ulcer disease (PUD), then stop the NSAID.

By specifying the following conditional probability
distribution for the belief network, the boxed section
of the belief network will mimic the PG.

P(Pg sat = true NSAID = true, PUD = true) = 1.0
P(Pg sat = true NSAID = true, PUD = false) = 0.0
P(Pg sat = true NSAID = false, PUD = true) = 0.0
P(Pg sat = true NSAID = false, PUD = false) = 0.0
P(Pg sat = false NSAID = true, PUD = true) = 0.0
P(Pg sat = false NSAID = true, PUD = false) = 1.0
P(Pg sat = false NSAID = false, PUD = true) = 1.0
P(Pg sat = false NSAID = false, PUD = false) = 1.0

We assume that PG preconditions refer to patient
states, not database representations, therefore we
distinguish between database variables and patient-
state variables. We use lower-case names to refer to
database variables. We represent the differences
between database variables and the patient-state
variables using conditional probability distributions,
for example, P(PUD pud) and P(NSAID nsaid).
These distributions describe the data accuracy of the
database variables.

We also represent explicitly the difference
between a patient who matches the logic of a PG, and
a patient who expert physicians would agree matches
the intent of the PG (i.e., good medical practice) by
adding a variable to represent whether the PG is truly

appropriate. The conditional probability distribution
P(Pg appropriate Pg sat) characterizes the fidelity
of the PG to ideal medical practice.

In this model, the conditional probability
distributions that model the logic of the rules would
not change from site to site, but the other distributions
could change markedly. For example, the probability
distributions for P(NSAID nsaid) and P(Pg
appropriate Pg sat) may differ from site to site due
to differences in data accuracy, and differences in
context, respectively.

To see how our approach may improve the
efficiency with which rule sets are imported into a
new setting, consider that, with existing rules, the
receiving site receives only what is contained within
the box in Fig. 2 (possibly accompanied by a history
of the rule, and references as in the Arden
specification). In our new model, the original site
would send the complete model, including the
probability distributions that define its data accuracy,
e.g., P(NSAID nsaid), and any data about P(Pg
appropriate Pg sat). The receiving site could, using
its own accuracy data, use the belief network to
compute P(Pg sat nsaid, pud) which provides a
rough estimate of the true and false alarm rates that it
could expect. It could compare this value against the
level at which the sending site was operating (we are
assuming that the sending site has similar utilities for
true and false alarms, and that they are sending a rule
found to be acceptable in their setting). If the
expected true alarm rate for the receiving site were
higher, and the false alarm rate lower, the receiving
site would have some measure of confidence that the
rule would work in its setting. If the pattern were
reversed, it would have to either consider whether to
implement the rule at all, attempt to improve data
accuracy, try to modify the rule to minimize false
alarms, or empirically test the rule itself.

If the receiving site were also given the sending
site's P(Pg appropriate Pg sat) and believed this to
be similar to its own, it could estimate P(Pg
appropriate nsaid, pud), forming an even more
accurate estimate of the number of false and true
alarms it would likely experience. It could use this
information to prioritize its efforts, if for example, it
were importing many rules, or had limited resources.

DISCUSSION

Sharing is a potential means to reduce the cost of
medical KB development. There are many obstacles
to sharing, however, including site differences in data
definition and data accuracy.

Our critical examination of prior studies on data
accuracy revealed that data accuracy varies
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considerably from site to site, error rates are often
high, and the accuracy of some data classes typically
used by reminder systems has not been characterized.

Rules transferred between sites with variations in
data accuracy can be expected to produce
unpredictable rates of false and true alarms at the new
site. In some cases these differences will be sufficient
to change the net expected benefit of implementing
the rule from positive to negative. Knowledge base
developers currently have few tools to diagnose such
problems before they occur, hence they must evaluate
the merit of every imported rule.

We proposed a general belief-network
representation of reminder rules that distinguishes
between a patient's true state and the database
representation of that state. It also distinguishes
between the probability that a PG's preconditions are
met, and the probability that the PG is truly
appropriate. If a receiving site has characterized its
data accuracy, this model will enable it to estimate the
number of false alarms and true alarms to expect
when importing reminder rules.

The utility of such alarms might also impact on
the decision to import a rule, and this information
could also be conveyed to the receiving site. Author
mmw has discussed how utility of reminders might be
measured and used to provide a rational basis for
setting the optimal rates of true and false alarms (23).

We have demonstrated how to represent
explicitly data error in a reminder system using a
probabilistic formalism that conditions the true state
of a patient on the data contained in an EMR. There
are two additional advantages of our belief-network
reminder system. First, it is tolerant of PG
parameters that may be missing from an EMR. If, in
our example, the PG states that we should not send a
reminder if a patient is on cytotec for prophylaxis
against NSAID-related PUD, but whether a patient is
on cytotec or not is not represented at the receiving
site (perhaps it is not in the formulary), the belief
network can still be evaluated with the patient-state
node representing cytotec in an indeterminate state.
Second, this model can represent differences in data
definition. If the patient-state nodes of the PG are
defined using a common medical vocabulary, the
receiving site could represent the semantic difference
between its database variables and the PG concept as
a conditional probability.
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